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Poitiers 26-31 Août 2010
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x ∈ Ω∗ε, x =
y

ε
, y ∈ Y ∗ y = εx .
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Example 1: Dirichlet-Neumann problem
∫

Ω∗ε

Aε∇uε∇v dx =

∫
Ω∗ε

f v dx +

∫
∂Sε∩Ω

gεv dσ(x),

∀v ∈ H1
0 (Ω∗ε; ∂Ω ∩ ∂Ω∗ε).

Example 2: Neumann problem
∫

Ω∗ε

Aε∇uε∇v dx +

∫
Ω∗ε

bεuε vdx =

∫
Ω∗ε

f v dx +

∫
∂Sε∩Ω

gεv dσ(x),

∀v ∈ H1(Ω∗ε).

• G. Allaire and F. Murat, Homogenization of the homogeneous
Neumann problem with nonisolated holes, Asymptotic Analysis 7
(1993).
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Example 3: Nonlinear boundary conditions
∫

Ωε

Aε∇uε∇v dx + aεγ
∫
∂T ε

h(uε)v dσ(x)

=

∫
Ωε

fv dx +

∫
∂T ε

g εv dσ, ∀v ∈ H1
0 (Ω∗ε; ∂Ω ∩ ∂Ω∗ε),

where h is an increasing nonlinear function satisfying suitable
growth conditions.

• C. Conca, J. I. Diaz, A. Linan, C. Timofte, Homogenization in
chemical reactive flows, Electronic J. Diff. Eqs., 40 (2004).
Such problems arise in particular, in the modeling of chemical
reactive ows.
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Aim :To introduce the unfolding method for
perforated domains and apply it to some model
problems

The results presented here are cointained in joint works with
• Alain Damlamian
• Patrizia Donato
• Georges Griso
• Rachad Zaki

The periodic unfolding method was introduced in order to give an
elementary proof for classical periodic homogenization problems, in
particular for cases with several micro-scales.
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The unfolding method is particularly well adapted for perforated
domains defined as follows:
a fixed domain Ω is given in Rn, together with a reference hole S
and a basis of the Rn whose vectors are macroscopic periods.
Then the perforated domain Ω∗ε, is obtained by removing from Ω
all the ε-periodic translates of εS .

A main advantage of the method is that by using an unfolding
operator, functions defined on (oscillating) perforated domains are
transformed into functions defined on a fixed domain. Therefore,
no extension operators are required and so it does away with the
regularity hypotheses on the boundary of the perforated domain,
necessary for the existence of such extensions. For instance, in the
two-dimensional case, the reference hole can be of snow-flake type.
In this context, when the unit hole is a compact subset of the open
reference cell, the condition insuring the existence of extension
operators, is replaced by the weaker condition of existence of a
Poincaré-Wirtinger inequality in the perforated reference cell.
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Consequences
• One can investigate the convergence properties of the unfoldings
of functions defined on Ω∗ε,
• The use of the periodic unfolding allows to obtain corrector
results under minimal regularity assumptions.
• It avoids the hypothesis that the perforated domains have no
holes intersecting ∂Ω.
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Remarks

• The unfolding operator is defined in the case when the unit hole
is a compact subset of the open unit cell and also in the case when
this is impossible to achieve (this can occur in particular in
dimensions larger than 2).
• When S is not compact in Y , an extra condition in terms of a
Poincaré-Wirtinger inequality is required for the union of the unit
cell and its translates by a period.
• One can consider also the situation where no choice of the basis
of periods gives a parallelotop Y such that Y ∗ = Y \ S is
connected (condition necessary for the validity of the
Poincaré-Wirtinger inequality). The method applies if there exists
a reference cell Y having the paving property with respect to the
period basis and such that Y ∗ is connected.
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No choice of parallelotop gives a connected Y ∗, while there are
many possible Y ’s that give a connected Y ∗, an example being the
following one
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Some applications for which the unfolding method is
well-fitted:
• domains with ε−holes of size of the order of ε (classical
homogenization), or / and of size of the order r(ε)ε with
r(ε) << ε (“small” holes leading to a “strange term”),
• PDE’s with complicated conditions on the boundaries of holes, as
for example non homogeneous Robin-type conditions or even non
linear ones. This is due to the fact that integrals on oscillating
boundaries are transformed by a “boundary unfolding operator”
into integrals on fixed domains,
• one can consider operators with oscillating coefficients (at a
given scale) and perforated domains with holes that are periodic
with another (independent) scales,
• multi-scale problems with oscillating coefficients, and any
combination of the different situations, for instance, a domain with
at the same time ε−size Neumann holes, r(ε)ε−size Dirichlet and
Neumann holes, and also add sieve at some scale.
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Decomposition

Let Y =
∏n

i=1 `i be a reference cell and Ω an open subset of Rn.

For z ∈ Rn, [z ]Y denotes the unique integer combination∑n
j=1 kj`j of the periods such that z − [z ]Y ∈ Y , and set

{z}Y = z − [z ]Y ∈ Y a.e. for z ∈ Rn.

Then for each x ∈ Rn, one has

x = ε
([x

ε

]
Y

+
{x

ε

}
Y

)
a.e. for x ∈ Rn.
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The periodic unfolding operator
For S , a strict closed subset of Y set Y ∗ = Y \ S and
τ(εS) =

{
εS |ε(`k + T ), k ∈ ZZn, k` = (k1`1, ..., kn`n)

}
.

The perforated domain is defined by Ω∗ε = Ω \ Sε.

Introduce the sets Ω̂∗ε = Ω̂ε \ Sε and Λ∗ε = Ω∗ε \ Ω̂∗ε.
Definition. For any function φ Lebesgue-measurable on Ω∗ε, the
unfolding operator T ∗ε is defined by

T ∗ε (φ)(x , y) =

φ
(
ε
[x

ε

]
Y

+ εy
)

a.e. for (x , y) ∈ Ω̂ε × Y ∗,

0 a.e. for (x , y) ∈ Λε × Y ∗.
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Some properties of T ∗ε .
• For every φ in L1(Ω∗ε) and w in Lp(Ω∗ε)(p ∈ [1,+∞[),

1

|Y |

∫
Ω×Y ∗

T ∗ε (φ)(x , y) dx dy =

∫
bΩ∗ε
φ(x) dx =

∫
Ω∗ε

φ(x) dx −
∫
Λ∗ε

φ(x) dx ,

‖T ∗ε (w)‖Lp(Ω×Y ∗) = | Y |1/p ‖w 1bΩ∗ε‖Lp(Ω∗ε) ≤ | Y |1/p ‖w‖Lp(Ω∗ε),

• Let φε be in L1(Ω∗ε) and satisfying∫
Λ∗ε

|φε| dx → 0.

Then ∫
Ω∗ε

φε dx − 1

|Y |

∫
Ω×Y ∗

T ∗ε (φε) dxdy → 0.
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Macro-micro decomposition

To study the convergence of sequences of gradients, a separation
of scales carried out by using a macro-micro decomposition of
functions in W 1,p(Ω∗ε).
As in the case without holes, the macro approximation Q∗ε is
defined by an average at the points of Ξε and extended to the set
Ω̂∗ε by Q1-interpolation (continuous and piece-wise polynomials of
degree ≤ 1 with respect to each coordinate) as customary in the
Finite Element Method.
For φ in W 1,p(Ω∗ε), p in [1,+∞], set

φ = Q∗ε(φ) +R∗ε(φ), a.e. in Ω̂∗ε.

By construction, Q∗ε(φ) is an approximation of φ while the
remainder R∗ε(φ) of order ε.
As a consequence, for a bounded sequence {wε} in W 1,p(Ω∗ε),
{∇wε} , {∇(Qε(wε))} and {T ∗ε (∇Qε(wε))} have the “same
behavior ”. This is not the case for Tε

(
∇(Rε(wε))

)
which will give

rise to a “correcting” term when passing to the limit.
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The main convergence results

Theorem
Suppose that wε in W 1,p(Ω∗ε) satisfies

‖wε‖W 1,p(Ω∗ε) ≤ C .

Then there exist a subsequence, w in W 1,p(Ω) and ŵ in
Lp(Ω; W 1,p

per (Y ∗)), such that

T ∗ε (wε)→ w strongly in Lp
loc(Ω; W 1,p(Y ∗)),

T ∗ε (wε) ⇀ w weakly in Lp(Ω; W 1,p(Y ∗)),

and

T ∗ε (∇wε) ⇀ ∇w +∇y ŵ weakly in Lp(Ω× Y ∗).
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Theorem
Let Ω be bounded and with Lipschitz boundary. Suppose that wε
belongs to W 1,p

0 (Ω∗ε; ∂Ω ∩ ∂Ω∗ε) and satisfies

‖∇wε‖Lp(Ω∗ε) ≤ C .

Then, there exist a subsequence, w in W 1,p
0 (Ω), ŵ in

Lp(Ω; W 1,p
per (Y ∗)), such that

‖wε − w‖Lp(Ω∗ε) → 0,

and

T ∗ε (wε)→ w strongly in Lp(Ω; W 1,p(Y ∗)),

T ∗ε (∇wε) ⇀ ∇w +∇y ŵ , weakly in Lp(Ω× Y ∗).
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Model problems

Let Ω be a bounded domain, f ∈ L2(Ω), Aε(x) = (aεij(x))1≤i ,j≤n

(uniformly) elliptic and with bounded coefficients,
gε ∈ L2(∂Sε ∩ Ω).
1. Dirichlet-Neumann problem

−div (Aε∇uε) = f in Ω∗ε,

uε = 0 on ∂Ω∗ε ∩ ∂Ω,

Aεuε · nε = gε on ∂Sε ∩ Ω.

(1)

2. Neumann problem
−div (Aε∇uε) + bεuε = f in Ω∗ε,

Aεuε · nε = 0 on ∂Ω∗ε ∩ ∂Ω,

Aεuε · nε = gε on ∂Sε ∩ Ω,

(2)

where bε is measurable, positive a.e. in Ω, essentially bounded as
well as its inverse.
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Variational formulation of Dirichlet-Neumann problem
Find uε ∈ H1

0 (Ω∗ε; ∂Ω ∩ ∂Ω∗ε) such that∫
Ω∗ε

Aε∇uε∇v dx =

∫
Ω∗ε

f v dx +

∫
∂Sε∩Ω

gεv dσ(x),

∀v ∈ H1
0 (Ω∗ε; ∂Ω ∩ ∂Ω∗ε).

Variational formulation of Neumann problem
Find uε ∈ H1(Ω∗ε) such that∫

Ω∗ε

Aε∇uε∇v dx +

∫
Ω∗ε

bεuε vdx =

∫
Ω∗ε

f v dx +

∫
∂Sε∩Ω

gεv dσ(x),

∀v ∈ H1(Ω∗ε).

•
∫

Ω∗ε

Aε∇uε∇v dx ∼ 1

|Y |

∫
Ω×Y ∗

T ∗ε (Aε)T ∗ε (∇uε) T ∗ε (∇v) dxdy .

• If Aε = A(x/ε) then T ∗ε (Aε)(x , y) = A(y)!!
• To treat nonhomogeneus boundary conditions, we use the
boundary unfolding operator.
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The boundary unfolding operator T b
ε

Let p be in (1,+∞). Suppose that ∂S is Lipschitz and has a finite
number of connected components. The boundary of the set of
holes in Ω is ∂Sε ∩Ω, denote by ∂̂Sε those that are included in Ω̂ε.
A well-defined trace operator exists from W 1,p(Y ∗) to
W 1−1/p,p(∂S) (each component of ∂S being with Lipschitz
boundary), =⇒ the same is true from W 1,p(Ω̂∗ε) to

W 1−1/p,p(∂̂Sε).

Aim now : to give a meaning to the unfolding operator for such
traces, to obtain estimates and convergences results for sequences
of functions in W 1,p−type spaces.
Definition For any function ϕ Lebesgue-measurable on ∂Ω̂∗ε ∩ ∂Sε,
the boundary unfolding operator T b

ε is defined by

T b
ε (φ)(x , y) =

φ
(
ε
[x

ε

]
Y

+ εy
)

a.e. for (x , y) ∈ Ω̂ε × ∂S ,

0 a.e. for (x , y) ∈ Λε × ∂S .
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If ϕ ∈W 1,p(Ω∗ε), T b
ε (ϕ) is just the trace on ∂S of T ∗ε (ϕ). The

integration formula reads

1

ε|Y |

∫
Ω×∂S

T b
ε (ϕ)(x , y) dx dσ(y) =

∫
c∂Sε

ϕ(x) dσ(x),

from which it follows that

‖T b
ε (ϕ)‖Lp(Ω×∂S) = ε1/p|Y |1/p‖ϕ‖

Lp(c∂Sε)
.

The presence of the power of ε here is significantly different from
the previous estimates concerning the operator T ∗ε and induces
some interesting effects.
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Convergence results for T b
ε

Theorem
Suppose wε is in W 1,p(Ω∗ε), gε is in Lp′(Ŝε) and

T ∗ε (wε)→ w strongly in Lp(Ω; W 1,p(Y ∗)),

T b
ε (gε) ⇀ g weakly in Lp′(Ω× ∂S).

Then

ε

∫
c∂Sε

gεwε dσ(x)→ 1

|Y |

∫
Ω×∂S

g(x , y) w(x , y) dxdσ(y).
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Several variants, in particular for wε in W 1,p
0 (Ω∗ε; ∂Ω ∩ ∂Ω∗ε)

satisfying ‖∇wε‖Lp(Ω∗ε) ≤ C .

Let gε ∈ Lp′

loc(∂Sε) and suppose that

T b
ε,Rn(gε)→ g strongly in Lp′

loc(Rn × ∂S),

1

ε
M∂S(T b

ε,Rn(gε)) ⇀ G weakly in Lp′

loc(Rn),

where T b
ε,Rn is the boundary unfolding operator defined in

(Rn)∗ε = Rn \ Sε. Then∫
∂Sε∩Ω

gε wε dσ(x)→ |∂S |
|Y |

∫
Ω

M∂S(yM g)·∇w dx +
|∂S |
|Y |

∫
Ω

G w dx

+
1

|Y |

∫
Ω×∂S

ŵ g dxdy .
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Application to the model problems

Hypotheses
• There is a matrix A such that

T ∗ε
(
Aε
)
→ A a.e. in Ω× Y ∗(or in measure in Ω× Y ∗).

• There exist g in L2(Ω× ∂S) and G in L2(Ω) satisfying

T b
ε (gε) ⇀ g weakly in L2(Ω× ∂S),

1

ε
M∂S(T b

ε (gε)) ⇀ G weakly in L2(Ω).

Two standard examples of functions gε satisfying these hypotheses

gε(x) = ε g({x/ε}Y ) if M∂S(g) 6= 0 =⇒ g = 0, G =M∂S(g),

gε(x) = g({x/ε}Y ) if M∂S(g) = 0 =⇒ G = 0.
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Neumann homogenized problem−div (A0∇u) +
|Y ∗|
|Y |
M

Y ∗
(b) u =

|Y ∗|
|Y |

f − div G in Ω,

A0∇u · n = G · n on ∂Ω.

Remark “Strange” phenomenon: the non-homogeneous Neumann
condition on the boundary of the holes inside Ω contribute to a
non-homogeneous Neumann condition on ∂Ω in the limit problem.

G(x)
.

=
|∂S |
|Y |

(
G +M∂S(yMg)(x)

)
−|Y

∗|
|Y |
MY ∗

(
A(x , ·)∇yχ0(x , ·)

)
in Ω,

where yM = y −M
Y ∗

(y), χ0 (Y -periodic) is defined by
−

n∑
i ,k=1

∂

∂yi

(
aik(x , y)

∂χ0(x , y)

∂yk

)
= g in Y ∗,

n∑
i ,k=1

aik(x , y)
∂χ0(x , y)

∂yk
ni = 0 on Y ∗.
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The homogenized matrix A0 = (a0
ij)1≤i ,j≤n is elliptic and given by

a0
ij(x) =

1

|Y |

∫
Y ∗

(
aij −

n∑
k=1

aik
∂χj

∂yk

)
(x , y) dy ,

where the “corrector” functions χj for (j = 1, . . . , n) belong to
L∞(Ω; H1

per (Y ∗)) and are (a.e. x in Ω), the solutions of

−
n∑

i ,k=1

∂

∂yi

(
aik(x , y)

(∂χj(x , y)

∂yk
− δjk

))
= 0 in Y ∗,

n∑
i ,k=1

aik(x , y)
(∂χj(x , y)

∂yk
− δjk

)
ni = 0 on Y ∗,

MY ∗(χj)(x , ·) = 0, χj(x , ·) Y -periodic.
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A general corrector result

Using the unfolding method, a general corrector result can be
proved. The standard corrector result

∥∥∇uε −∇u0 −
n∑

i=1

∂u0

∂xi
∇yχi

({ ·
ε

}
Y

)∥∥
L1(Ω∗ε)

→ 0.

is then a simple corollary. To do so, we need to recall the definition
of the averaging operator U∗ε , the adjoint operator to T ∗ε (and its
left inverse).
For p in [1,+∞], the averaging operator
U∗ε : Lp(Ω× Y ∗) 7→ Lp(Ω∗ε) is defined as

U∗ε (Φ)(x) =


1

|Y |

∫
Y

Φ
(
ε
[x

ε

]
Y

+ εz ,
{x

ε

}
Y

)
dz a.e. for x ∈ Ω̂∗ε,

0 a.e. for x ∈ Λ∗ε.
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Theorem
The following strong convergence holds:

‖∇uε −∇u0 −
n∑

i=1

Uε
(∂u0

∂xi

)
U∗ε (∇yχi )‖L2(Ω∗ε) → 0.

where Uε and U∗ε are the average operators.
In the case where the matrix field A does not depend on x, the
following corrector result holds:

∥∥uε − u0 − ε
n∑

i=1

Qε
(∂u0

∂xi

)
χi

({ ·
ε

}
Y

)∥∥
H1(Ω∗ε)

→ 0.
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A problem with nonlinear boundary conditions

Consider the homogenization of the following problem (modeling
chemical reactive flows):

−div(Aε∇uε) = f in Ωε,

Aε∇uε · n + aεγh(uε) = g ε on ∂T ε
int ,

uε = 0 on ∂Ωε \ ∂T ε
int ,

where a ∈ R+, γ is a real parameter, Aε = (aεij(x))1≤i ,j≤N is a

matrix field in M(α, β,Ω), f ∈ L2(Ω), g ε(x) = g
(x

ε

)
where g is

a Y−periodic function in L2(∂T ).
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Assume that h : R 7→ R is such that
• h is a continuously differentiable function, monotonously
non-decreasing, h(0) = 0. Suppose moreover that there exist

C ≥ 0 and q with 0 ≤ q ≤ +∞ if n = 2, and 0 ≤ q ≤ n

n − 2
if

n > 2, such that∣∣∣∣∂h

∂s

∣∣∣∣ ≤ C
(
1 + |s|q−1

)
, ∀s ∈ R.

The variational formulation is: find uε ∈ V ε
∫

Ωε

Aε∇uε∇v dx + aεγ
∫
∂T ε

h(uε)v dσ(x)

=

∫
Ωε

fv dx +

∫
∂T ε

g εv dσ(x) for every v ∈ V ε,

where
Vε = {ϕ ∈ H1(Ωε) |ϕ = 0 on ∂Ωε \ ∂T ε

int}.
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Difficulty: the passage to the limit in the term

aεγ
∫
∂T ε

h(uε)v dσ(x).

Theorem. Given w ε in Vε, with

‖w ε‖H1(Ωε) ≤ C ,

suppose there is w ∈ H1
0 (Ω) such that

w̃ ε ⇀ θw weakly in L2(Ω).

Then,

T b
ε (h(w ε)) ⇀ h(w) weakly in Lq1

loc(Ω; W
1− 1

q1
,q1(∂T )),

where

q1 =
2n

q(n − 2) + n
.
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Limit problems

Case γ = 1
• If M∂T (g) = 0,

ũε ⇀ θu0 weakly in L2(Ω),

where u0 ∈ H1
0 (Ω) is the unique solution of the problem

−div(A0(x)∇u0) + a
|∂T |
|Y |

h(u0) = θf in Ω.

• If M∂T (g) 6= 0 and h is positively homogeneous of degree 1,

εũε ⇀ θu0 weakly in L2(Ω),

where u0 ∈ H1
0 (Ω) is the unique solution of the problem

−div(A0(x)∇u0) + a
|∂T |
|Y |

h(u0) =
|∂T |
|Y |
M∂T (g) in Ω.



Nonlinear boundary conditions

Case γ > 1

• If M∂T (g) = 0,

ũε ⇀ θu0 weakly in L2(Ω),

where u0 ∈ H1
0 (Ω) is the unique solution of the problem

−div(A0(x)∇u0) = θf in Ω,

• If M∂T (g) 6= 0 and h is positively homogeneous of degree 1,

εũε ⇀ θu0 weakly in L2(Ω),

where u0 ∈ H1
0 (Ω) is the unique solution of the problem

−div(A0(x)∇u0) =
|∂T |
|Y |
M∂T (g) in Ω.
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Case −1 ≤ γ < 1 and a strictly positive
• If M∂T (g) = 0, then the sequence {εγ−1ũε} is bounded in
L2(Ω), and if {εk} is a subsequence such that

εγ−1
k ũεk ⇀ θu0 weakly in L2(Ω), then h

(
u0
)

=
1

a

|Y ?|
|∂T |

f .

If the Nemytskii operator associated to h is invertible from L2q(Ω)

on L2(Ω), then u0 = h−1

(
1

a

|Y ?|
|∂T |

f

)
.

• If M∂T (g) 6= 0 and h is positively homogeneous of degree 1,
then the sequence {εγ ũε} is bounded in L2(Ω), and if {εk} is a
subsequence such that

εγk ũεk ⇀ θu0 weakly in L2(Ω), then h
(
u0
)

=
1

a
M∂T (g).

Case γ < −1
ũε → 0 strongly in H1

0 (Ω).
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